skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Tanjaya, Arthur"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Schur polynomials are special cases of Schubert polynomials, which in turn are special cases of dual characters of flagged Weyl modules. The principal specialization of Schur and Schubert polynomials has a long history, with Macdonald famously expressing the principal specialization of any Schubert polynomial in terms of reduced words. We prove a lower bound on the principal specialization of dual characters of flagged Weyl modules. Our result yields an alternative proof of a conjecture of Stanley about  the principal specialization of Schubert polynomials, originally proved by Weigandt. 
    more » « less